Hyperspectral Remote Sensing of Coastal Morphodynamics

Nicolas Pucino¹, Rafael C. Carvalho¹, Blake Allan¹, David M. Kennedy², Daniel Ierodiaconou¹

¹ School of Life and Environmental Sciences , Deakin University, <u>npucino@deakin.edu.com</u> ² School of Geography, Faculty of Science, The University of Melbourne

Environment Land, Water and Planning

PhD Program

Nicolas Pucino

PhD Candidate in Remote Sensing of Coastal Morphodynamics, Deakin University

- BA in Physical Geography
 @ University of Lausanne (Switzerland)
- MA in Coastal Management and Planning
 @ University of Wollongong (Australia)
- Geospatial sciences and Remote Sensing fanatic

PhD Program

Chapter I	Sediment Facies Radiometrics	 ASD Field Spectroscopy of supra/intertidal sandy sediments + Lab analysis Endmembers extraction Open Source Spectral Library (Specchio)
Chapter II	UAS-based Sediment Facies Mapping	 Multitemporal UAS SfM and Hyperspectral beach surveys Segmentation and supervised classification with spectral library Sand sampling for ground-truth SfM volumetrics + classification maps = sediment transportation maps
Chapter III	Satellite-based hyper/multispectral monitoring	 Depending on imagery availability (Satellogic, Reaktor Space Lab) Pixel unmixing analysis to study the sand classes present in every pixel Mineral abundance maps, if UAS spectroscopy and lab radiometry is done prior to image acquisition
Chapter IV	Satellite-based shoreline monitoring	 Python scripting for shoreline extraction from Sentinel-2 and Planet imagery DEA ARD data + NCI cloud computing via Jupyter NB for Sentinel-2 imagery Planet API + Google Earth Engine and Citizen Science UAS data for Planet imagery
Ongoing	Citizen Science data analysis scripting	 Python scripting for automatic analysis (transects analysis) Creation of Jupyter Notebook for open source analysis tools Basic spatial database structure for storing profiles and volumetrics (future work)

Hyperspectral + Coasts

From DoDs to Sediment Facies Maps

SfM allows to calculate volumes loss/fill in a spatially explicit way along sandy beaches, answering the question «**how much sediment has been cut/fill here?**». However, it doesn't provide a clear sediment directionality dimension and sediment exhanges between depositional environments or even coastal compartments can only be inferred by geomorphological observations or expensive and time consuming sediment tracking methods.

This study aims to deliver a method for answering the question *«how much of that specific type of sand accumulated/eroded from here?»,* with the type of sand being an indicator of the geographic and geomorphic sediment origin.

Dems of Difference (DoDs)

Vegetation Foredune sa Coarse sand Medium sar Fine sand of

Site specific sediment facies maps

Previous Study The Belgium Coastline (Deronde et al. 2008)

Sediment facies Map

	PROs									
•	Direction of sediments can be qualitatively derived Nourishment sand is detected and monitored									
	<u>CONs</u>									
•	High operational costs (aerial) Detect only surficial sand , not									

absolute classes volumetrics

B. Deronde , P. Kempeneers , R. Houhuys , J.-P. Henriet & V. Van Lancker (2008) Sediment facies classification of a sandy shoreline by means of airborne imaging spectroscopy, International Journal of Remote Sensing, 29:15, 4463-4477, DOI: 10.1080/01431160801891804

My Approach

Future of EO Satellite Hyperspec is evolving rapidly ...

Government

Sensor (Plat	form) 0002	2002 2003 2004 2005 2005 2006	2007 2008 2009 2010	2012 2013 2013 2014 2015	2016 2017 2018	2019 2020	2021 2022 2023	2024	2026		Country	Status	Life spar	n.bands	Spec.res	spectrum	Spatial Resolution
lyperion (EO-	1)	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -				And And A	1045 - 1058 F 105000	A MARK AND A		Satellogic	Argentina	2016	Зy	600	5nm	VNIR-SWIR	30m
henzhou-8 (Tiai										HyperSat	USA	2020		200	na	na	sub 10m
ISI-A			_		-					Reaktor	Finland	2019	na	na	na	SWIR	na
MSI-B (Sen	tinel-2)							£		NorthStarCanada	Canada	2021	na	na	na	SWIR	na
	SMA)				5												
HISUI (HIS	UI)							E .									
SHALOM (SHA	ALOM)																
EnMAP HSI (EnM	/IAP)																
HyspIRI (Hys	pIRI)					1											
HypXIM (Hyp	XIM)																
	-	Hyperspectral senso	or lifetime														
	_	Hyperspectral senso	r lifetime extension														
	-	Multispectral sensor	lifetime _														
Instrument	MSI	EnMAP HSI	SHALOM	HyspIRI	HypXIM	-					• Sat	ellogi	<i>ic,</i> mi	crosa	at <i>,</i> 29	MIO	
latform name	Sentinel-2	EnMAP	Improved Multi- Purpose Satellite-II	HyspIRI	HypXIM	_					• Zhı	ıhai C	Drbita	ı Con	trol,		
Sensor type	Multispectral	Hyperspectral	Hyperspectral	Hyperspectral	Hyperspectra	ıl									,		
Swath width (km)	290	30	30	145-600	15						sm	allsat	. S?				
pectral range (nm)	443-2190	420-2450 420-1000	400-2500 400-1010	380-2510	400-2500 400-1100												
VNIR		900-2450	920-2500	380-1400 1400-2510	1100-2500						● Ork	oital S	ideki	ck A	71/10	ר	
Spectral bands	13	244	275	214	210						010	ntui J	ucki	сл, т	. /	<i>,</i>	
Resolution											Por	aktor	Cnac	2 G I I	ćΟ		
Spatial (m)	10-20-60	30	10	30 (60)	8						· Net	ικισι	spuce	2,00	, יך,		
Temporal (day)	5	$27 (VZA \ge 5^{\circ})$	$4 (VZA \ge 30^{\circ})$	5-16	3-5						• 11	C	+	الممالم	. OF 1		
Spectral (nm)	15-180	$4 (VZA \ge 30^{\circ})$ 6.5 (VNIR)	10	10	10						• пур	perSa	t, sm	alisal	., 85 I	VIIU	
Spectral (nm)	13-100	10 (SWIR)	10	10	10									C 1			
SNR (30% albedo)											• NOI	rStar	North	าStar	, mici	rosat	
VNIR	89:1 to 168:1	400:1	200:1	560:1 at 500 nm	\geq 200:1 to 250	:1											
CLUTP		>400:1 at 495 nm	600:1 at 650 nm								• Hv	percu	bes				
SWIR	50:1 to 100:1	180:1 >180:1 at 2200 nm	200:1 400:1 at 1550 nm	356 at 1500 nm 236 at 2200 nm	$\geq 100:1$												
		>180:1 at 2200 nm	400:1 at 1550 nm 100:1	256 at 2200 nm							• ()	sine					
			200:1 at 2100 nm								000	mic					
Objective	Earth observation	Earth observation	Land and ocean	Volcanic,	Soil, urban,						• Sim	ei Sta	nr Co	Itd			
20			observation	vegetation, soil,	coastal,						5177		$n \cup 0$.	Llu.			
	E.	C	T. 1 T	exploration	biodiversity												
Country Organization	Europe ESA	Germany GFZ-DLR	Italy-Israël ASI-ISA	USA JPL-NASA	France CNES												
Number of articles	41	GFZ-DLK 41	2 2	JFL-NASA 35	1		Source	Transo	n et al., 2	018					Sou	ILCE. WWW D	ewsspace.im
	11	11		00		- `	Jource.	1101130	n et ui., 2	010					500		c ++ 35 pucc.im

Commercial, nano and small satellites

Citizens Science + UAV data

propeller

	X variance (mm)	Y variance (mm)	Z variance (mm)
count	58.00000	58.000000	58.000000
mean	6.815517	4.103448	7.934483
std	4.764555	4.739900	8.424620
min	0.400000	0.400000	0.700000
25%	4.350000	1.225000	3.375000
50%	6.200000	2.450000	5.850000
75%	8.150000	5.725000	9.875000
max	24.400000	27.900000	53.400000

- 58 Smart GCPs
- **2-3** hours acquisition time
- **7,4 and 8 mm** XYZ variance during GCP acquisition time

Project		20181129_Warmambool_Harbour						
Processed		2018-12-03 17:23:53						
Camera Model Name(s)		FC6310_8.8_5472x3648 (RGB)(1), FC6310_8.8_5472x3648 (RGB)(2), FC6310_8.8_5472x3648 (RGB)(3)						
Average Ground Sampling Dis (GSD)	stance	2.56 cm / 1.01 in						
Area Covered		1.616 km ² / 161.5825 ha / 0.62 sq. mi. / 399.4857 acres						
Time for Initial Processing (wirreport)	thout	01h:52m:01s						
Quality Check			6					
Quality Check	mediar	n of 37454 keypoints per image	0					
-	_	n of 37454 keypoints per image ut of 1109 images calibrated (96%), all images enabled	0					
Images	1073 o							
⑦ Images⑦ Dataset	1073 o 0.49%	ut of 1109 images calibrated (96%), all images enabled	0					

- Lady Bay, 1.6 km2 (161.6 ha)
- **2.4 cm** RMSE 3D absolute accuracy
- 2.56 cm GSD \rightarrow 1 pixel of error

	fid	x	У	z_dsm	lateral rms	tr_id	z_rtk	new_field	z_diff
count	150.000000	150.000000	1.500000e+02	150.000000	150.000000	150.000000	150.000000	150.000000	150.000000
mean	109.673333	630516.725701	5.748889e+06	2.893818	0.004704	3.6 <mark>1</mark> 3333	2.937904	107.233333	-0.044086
std	68.745567	1139.485686	3.414026e+02	4.739371	0.001037	2.382224	4.750810	67.005300	0.077730
min	1.000000	628838.900500	5.748539e+06	-1.013198	0.002600	0.000000	-1.075440	1.000000	-0.5 <mark>1</mark> 4993
25%	39.250000	629083.574250	5.748563e+06	-0.138148	0.003925	1.000000	-0.095515	39.250000	-0.081568
50%	133.500000	631189.392150	5.748789e+06	0.770039	0.004700	5.000000	0.790380	129.500000	-0.047882
75%	170.750000	631634.2 <mark>1</mark> 8100	5.749270e+06	3.828357	0.005400	6.000000	3.946635	166.750000	-0.023891
max	208.000000	631679.697000	5.749501e+06	17.777303	0.008000	6.000000	17.797445	204.000000	0.141925

Mean Error (ME) = -0.04m (4cm)

 \rightarrow DSM values are slightly overestimated, but accurate.

Root Mean Squared Error (RMSE) = 0.09m (9cm)

- → RMSE over PR method are known to overestimate the error estimations (Carrivick et.al, 2016).
- → 9 cm RMSE in Z is a common value in the **scientific** UAV literature and also aerial LiDAR surveys.

By the end of the **3 years** time Citizen Scientists will have produced more than **200 datasets** ...

... **14 locations** with differences in wind, wave and sediment regimes. **Good research** possibilities!

... there will be **1 Tb of DSM and** orthophotos to analyse ...

How to analyse such an amount of geospatial data in an efficient way?

PostgreSQL + PostGIS

Python Geospatial Scripting

Thanks ! Questions ?

 $contacts \rightarrow$

NPUCINO@DEAKIN.EDU.AU 0423690189

Environment Land, Water and Planning