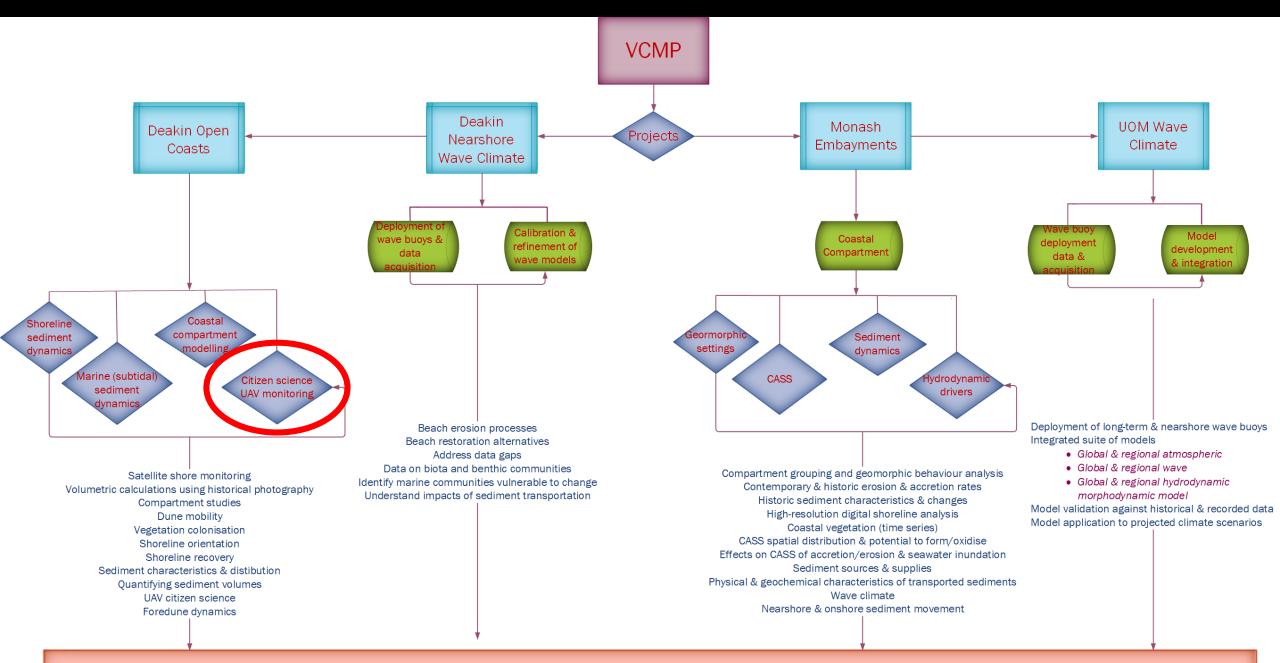
Victorian Coastal Monitoring Program

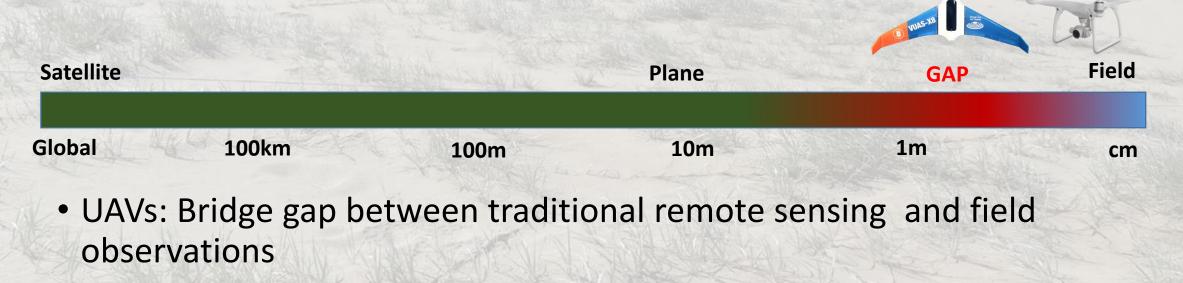
Blake Allan¹, Daniel Ierodiaconou¹, David Kennedy², Nicolas Pucino¹, Rafael Carvalho¹, Karina Sorrell², Mary Young¹

Deakin University¹ University of Melbourne²


DEAKIN

Environment Land, Water and Planning

Information/data on coastal condition, change, hazards and expected longer-term impacts associated with climate change to inform decision-making and adaptation planning


Overview

- What is the Citizen Science UAV Monitoring?
- What is being collected?
- Progress to date

• The challenges of Citizen Science UAV Coastal Monitoring

Citizen Science Monitoring

- Monitoring priority foreshore areas
- Changes in the volume, topography and extent of beach sands and foreshore morphology

Citizen Science Monitoring

- Collection of survey-grade data
 - Horizontal accuracy < 5 cm
 - Vertical accuracy < 10 cm
- Collection approximately every 6 weeks
- Using small (< 2 kg) UAVs

Data available to everyone online

propeller

Priority Locations

• 15 Locations along the Victorian coastline

Equipment

Phantom 4 Pro

01111

01111

- 3 Batteries
- iPad Mini
- AeroPoints
- Safety Equipment

Training

- Theory Training Regulations pertaining to < 2 kg Operation
 - 30 m from people and property
 - Not near registered aerodromes
 - Line of sight
 - During daylight hours
 - Separation from manned aircraft
 - Below 400 feet (121 m)
 - VMC conditions (weather)

Visual Line of Sight (VLOS)

Training

- Practical Training
 - UAV safety, handling, transport, and storage
 - Assembly/Disassembly
 - Flight controls and flight modes
 - Airframe inspections
 - Flight manoeuvres
 - Emergency procedures
 - Automated mission planning data collection
 - Camera operation
 - High-precision GPS use

Training Manuals

Victorian Coastal Monitoring Program

> Citizen Science Coastal Monitoring

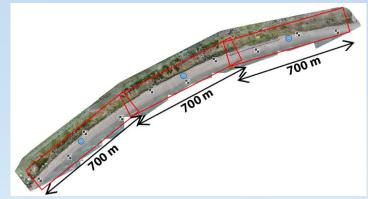
Standard Survey & Operational Procedures for UAV Mapping Coastal Erosion

Victorian Coastal Monitoring Program

Citizen Science Coastal Monitoring

Practical Training Syllabus

What Is Being Collected?


Data Collection

- 3 flights covering ~ 2 km
- Crosshatch flight pattern

- Approximately 600 20 MP images < 3 cm/pixel on the ground
- 10 Ground Control Points
- Upload data for processing

Data Processing

 Local data processing in Pix4D photogrammetry software

- Quality Assurance (QA) against independent fixed points and landmarks
- Upload to PropellerAero Online Portal

https://www.marinemapping.org/vcmp-citizen-science

propeller

UAV Data

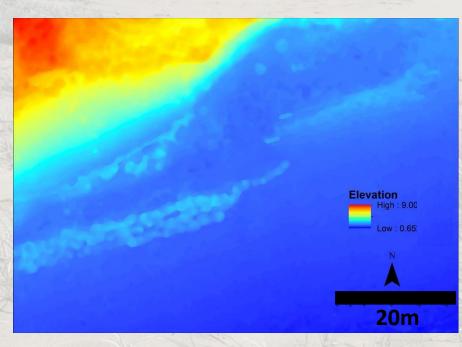
- Orthomosaics
 - RGB GeoTIFF (~3 cm/pixel)
 - DSM (~3 cm/pixel)
 - DTM (~15 cm/pixel)

UAV Data

Orthomosaics

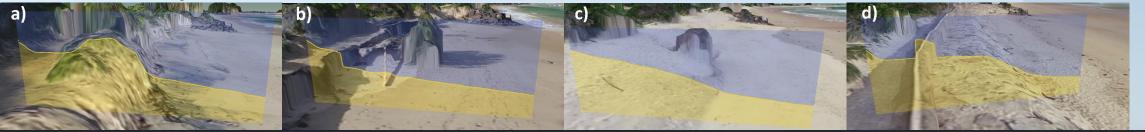
- RGB GeoTIFF (~3 cm/pixel)
- DSM (~3 cm/pixel)
- DTM (~15 cm/pixel)
- Point Clouds

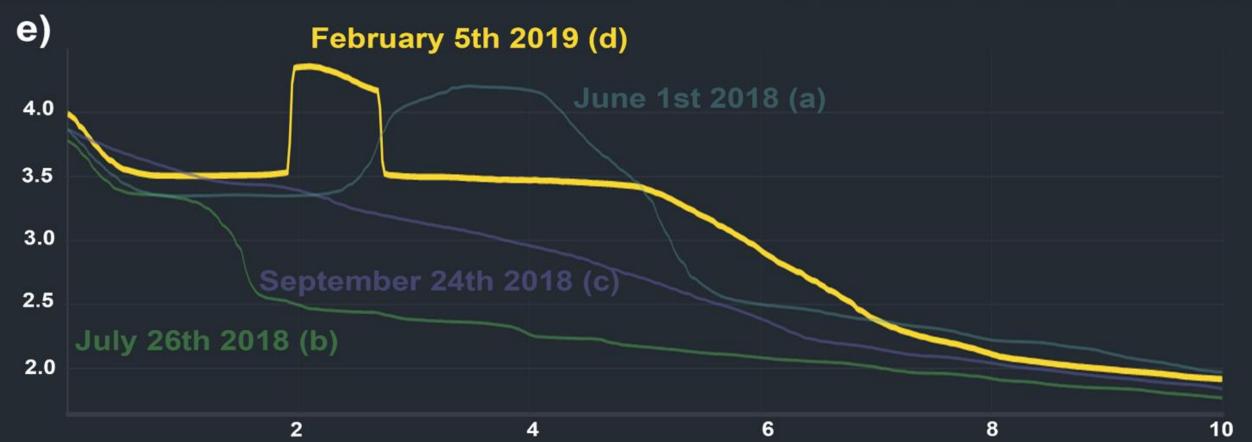
UAV Data


- Orthomosaics
 - RGB GeoTIFF (~3 cm/pixel)
 - DSM (~3 cm/pixel)
 - DTM (~15 cm/pixel)
- Point Clouds
- Triangular Mesh

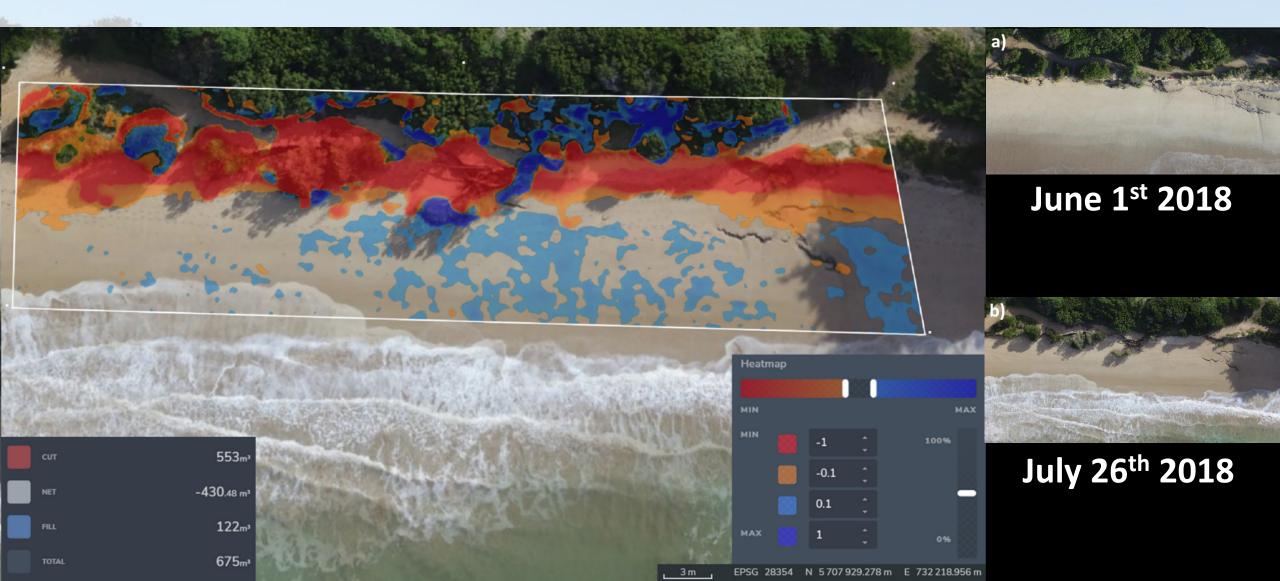
Citizen UAV Data Applications

- Providing baseline and time series data for coastal areas
- Monitoring physical change
 - Measure erosion and accretion
 - Beach and cliff stability
- Assessing biological habitats
 - Saltmarsh, mangroves
 - Intertidal reefs


propeller

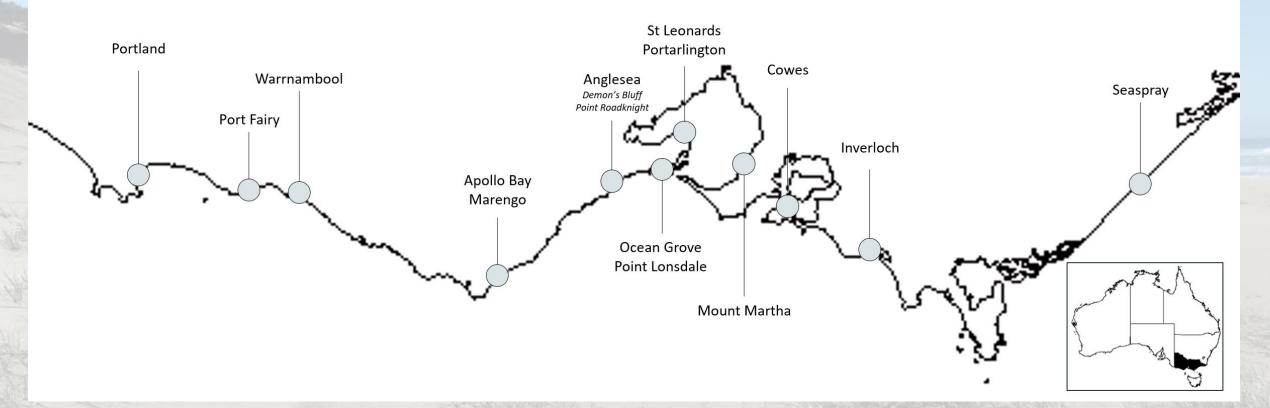

Propeller Aero - Elevation History

propeller

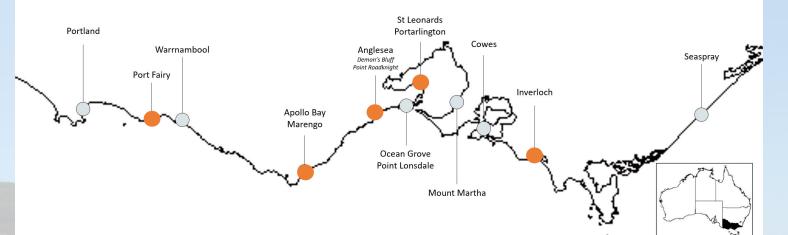

Propeller Aero - Cross-Sections

propeller

Propeller Aero - Volumetrics


Warrnambool Harbour Before and After an Major Storm Event

Progress to Date


Progress to Date

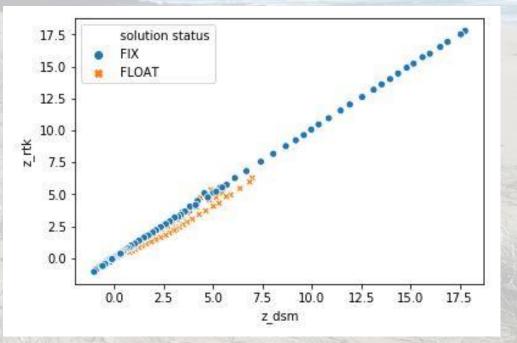
Portland (2) Apollo Bay (9) Point Lonsdale (3) Cowes (7) Port Fairy (11)Warrnambool (10)Anglesea Demon's Bluff (8)Anglesea Point Roadknight (8)St Leonards (7)Portarlington (7)Inverloch (6)Seaspray (5)

Marengo (9) Ocean Grove (2) Mount Martha (1)

Progress to Date

- 95 datasets collected
- 8 sites operating independently

Commencing Science Team Surveys


- Larger areas (> 10 km) in key areas, expanding on the Citizen Science flights
- Encompassing entire beach crescents
- Every 3-6 months

Quality Assurance

• Mean Error (ME) = 4cm

	fid	x	У	z_dsm	lateral rms	tr_id	z_rtk	new_field	z_diff
count	150.000000	150.000000	1.500000e+02	150.000000	150.000000	150.000000	150.000000	150.000000	150.000000
mean	109.673333	630516.725701	5.748889e+06	2.893818	0.004704	3.613333	2.937904	107.233333	-0.044086
std	68.745567	1139.485686	3.414026e+02	4.739371	0.001037	2.382224	4.750810	67.005300	0.077730
min	1.000000	628838.900500	5.748539e+06	-1.013198	0.002600	0.000000	-1.075440	1.000000	-0.514993
25%	39.250000	629083.574250	5.748563e+06	-0.138148	0.003925	1.000000	-0.095515	39.250000	-0.081568
50%	133.500000	631189.392150	5.748789e+06	0.770039	0.004700	5.000000	0.790380	129.500000	-0.047882
75%	170.750000	631634.218100	5.749270e+06	3.828357	0.005400	6.000000	3.946635	166.750000	-0.023891
max	208.000000	631679.697000	5.749501e+06	17.777303	0.008000	6.000000	17.797445	204.000000	0.141925

- DSM values are slightly overestimated, but accurate.
- Vertical (z) Root Mean Squared Error (RMSE) = 9cm
 - Commensurate to the scientific UAV literature and aerial LiDAR surveys.

Challenges of Citizen Science UAV Coastal Monitoring

Challenges

1) Parks Victoria land

- Citizen Science groups cannot operate in Parks Victoria land

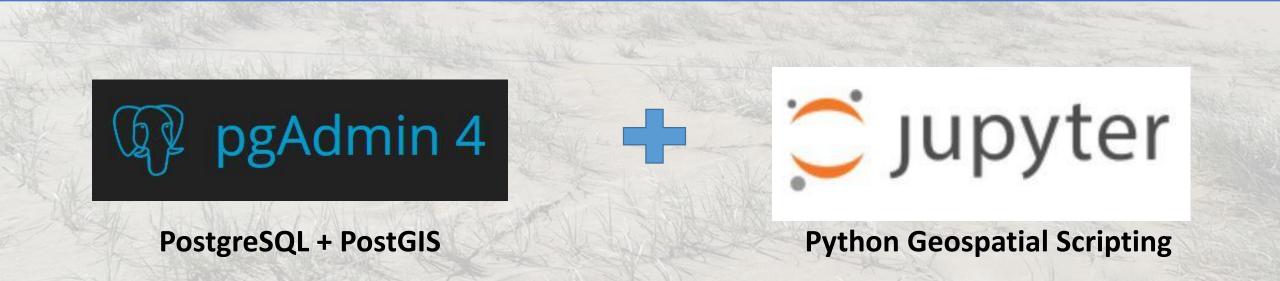
2) Data processing

- Vertical data error at land/sea interface requiring manual cleaning
- Quality Assurance

3) Insurance

- Over 6 months to organise UAV insurance for volunteers

4) Cost


- Approximately \$55,000 - \$60,000 per group for 3 years

Within **3 years** Citizen Scientists will have produced >**300 datasets** ...

... **15 locations** with differences in wind, wave and sediment regimes. **Good research** possibilities!

... there will be **1-2 Tb of DSM** and orthomosaics to analyse ...

How to analyse such an amount of geospatial data in an efficient way?

JUDYTET Plot Transects Data Last Checkpoint: 11 minutes ago (unsaved changes)

File Edit View Insert Cell Kernel Widgets Help

🖹 🕂 🛠 🔣 🏠 🛧 🔸 🕺 Run 🔳 C 🗭 Code 🔗 📼

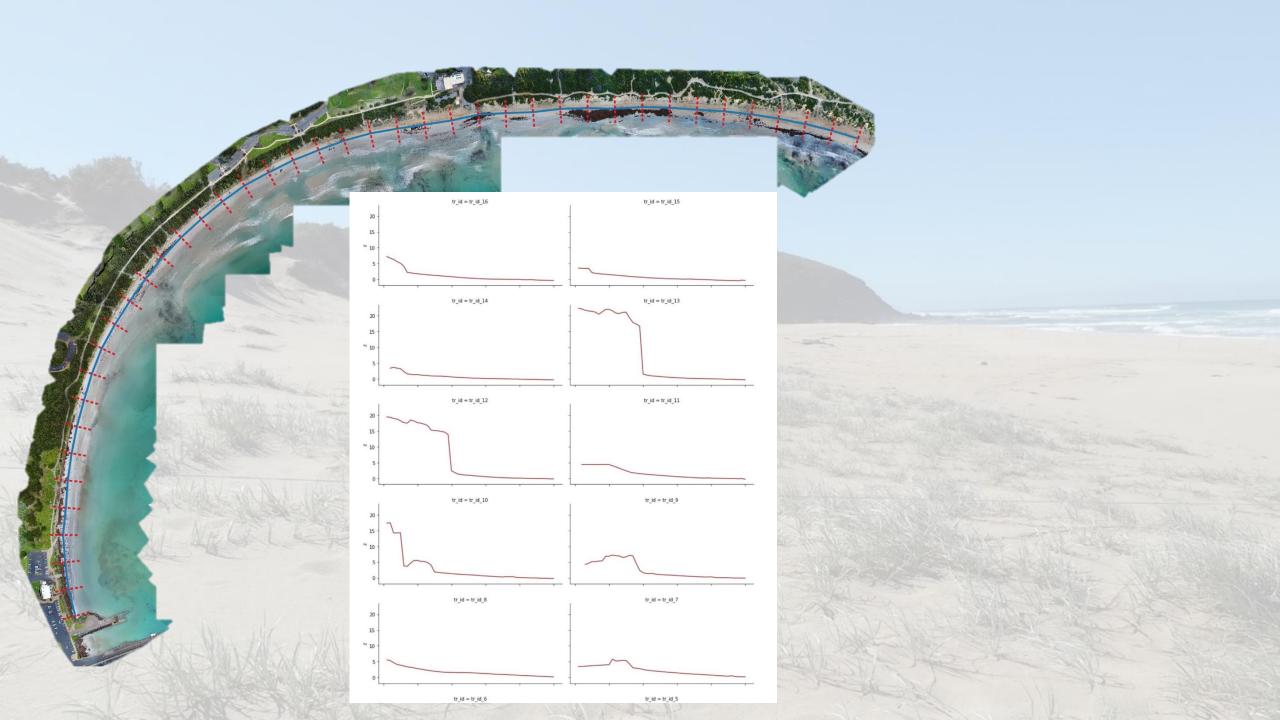
In []: 1 tr_0.iplot(subplots=True, shared_xaxes=True, vertical_spacing=.09, fill=True, subplot_titles=True, 2 title='Transect 0', xTitle='Distance', yTitle='Z (m)'

In []: 1 tr_10.iplot(subplots=True, shared_xaxes=True, vertical_spacing=.09, fill=True, subplot_titles=True, 2 title='Transect 10',xTitle='Distance (m)',yTitle='Z (m)')

In []: 1 tr_20.iplot(subplots=True, shared_xaxes=True, vertical_spacing=.1,fill=True, subplot_titles=True, 2 title='Transect 39',xTitle='Distance (m)',yTitle='2 (m)')

Single plot of profile evolution

In []:	<pre>1 #tr_1.to_csv('mar_trl.csv', sep=',') 2 tr_0.iplot(title='Transect 1',xTitle='Distance (m)',yTitle='Z (m)')</pre>
In []:	<pre>1 #tr_2.to_csv('mar_tr2.csv', sep=',') 2 tr_10.iplot()</pre>
In []:	<pre>1 #tr_3.to_csv('mar_tr3.csv', sep=',') 2 tr_20.iplot()</pre>
In []:	<pre>1 #tr_4.to_csv('mar_tr4.csv', sep=',') 2 tr_4.iplot()</pre>
In []:	<pre>1 #tr_5.to_csv('mar_tr5.csv', sep=',') 2 tr_5.iplot(title='Transect 5',xTitle='Distance (m)',yTitle='2 (m)')</pre>
In []:	<pre>1 #tr_6.to_csv('mar_tr6.csv', sep=',') 2 tr_6.iplot(title='Transect 6',xTitle='Distance (m)',yTitle='Z (m)')</pre>
In []:	1 #tr_7.to_csv('mar_tr7.csv', sep=',') 2 tr_7.iplot()
In []:	<pre>1 #tr_8.to_csv('mar_tr8.csv', sep=',') 2 tr_8.iplot(title='Transect 8',xTitle='Distance (m)',yTitle='2 (m)')</pre>
In []:	1


Jupyter

Logout

Python [conda env.plot_pd]

Trusted

- **Automatic** extraction of all elevation profiles along the multitemporal DSMs
- 2 main inputs: the DSMs and the transects (vector lines)
- 1 big data table, text format, full of information
- Python geospatial processing is fast and efficient
- Interactive plotting inside Jupyter Notebooks
- Powerful geostatistical analysis with Geopandas
- Big Data table feeds directly into PosgreSQL to be manipulated and queried with PostGIS
- Fits with **Qgis** and **ArcGIS**

