Waves + Hydro-Sed

Dr Ruth Reef

Monash University

(Matthew Peck, Celia Martinez Ramos, Sabrina Sayers

Linear Wave Theory: An approximation of the time-mean wave energy flux (wave power) (kW/m² time unit converted to seconds) :

$$Pwl = \frac{\rho g^2}{64\pi} H_{m0}^2 T_e$$

$$E = \frac{1}{16} \rho g H_{m0}^2$$

Characteristics and Movement of a Wave

Shallow water transformation (shallow water wave, depth<1/20 of wave length): As a wave moves into shallow waters: **Altering wave form and speed (not period)**

- orbitals interact with the ocean floor (feel the bottom) and DRAG
- waves closer to shore slow down while those travelling behind them are faster reducing the wavelength
- Shoaling of the waves in the shallows
- The water in between crests is "squeezed" and has no where to go but up
- Increases wave height (not changing energy)
- Not two crests merging, but rather a change in steepness of the wave

Seconds elapsed: 10.0

Calcium

A range of moments operate on a sand particle: fluid force, gravitational force, drag

Reference graphs and tables are used in conjunction with formulas to estimate sediment transport rates (Qs):

	Particle classification name	Ranges of particle diameters		Shields parameter	Critical bed shear stress (τ_c)
		φ	mm	(unitensioniess)	(N/m ²)
	Coarse cobble	-78	128 – 256	0.054 - 0.054	112 – 223
	Fine cobble	-67	64 - 128	0.052 - 0.054	53.8 - 112
	Very coarse gravel	-56	32 - 64	0.05 - 0.052	25.9 - 53.8
	Coarse gravel	-45	16 - 32	0.047 – 0.05	12.2 – 25.9
	Medium gravel	-34	8 - 16	0.044 - 0.047	5.7 - 12.2
	Fine gravel	-23	4 - 8	0.042 - 0.044	2.7 – 5.7
	Very fine gravel	-12	2 – 4	0.039 - 0.042	1.3 – 2.7
	Very coarse sand	01	1 – 2	0.029 - 0.039	0.47 - 1.3
	Coarse sand	1 - 0	0.5 - 1	0.033 - 0.029	0.27 - 0.47
	Medium sand	2 - 1	0.25 - 0.5	0.048 - 0.033	0.194 – 0.27
It's hard to	⁻ ine sand	3 – 2	0.125 - 0.25	0.072 - 0.048	0.145 – 0.194
resuspend a bed of small grains!	/ery fine sand	4 - 3	0.0625 - 0.125	0.109 - 0.072	0.110 - 0.145
	Coarse silt	5 - 4	0.0310 - 0.0625	0.165 - 0.109	0.0826 - 0.110
	Medium silt	6 - 5	0.0156 - 0.0310	0.25 – 0.165	0.0630 - 0.0826
0.01101	Fine silt	7 - 6	0.0078 - 0.0156	0.3 - 0.25	0.0378 - 0.0630

Critical shear stress by particle-size classification for determining approximate condition for sediment mobility at 20 degrees Celsius.

What is erosion? There is no significant relationship between lateral and vertical changes at sites we've studied (Gordon and Reef 2019)

- 5 sites in WP Bay
- 100 pins per site
- Rectangular Grid
- Varying distance from the shoreline
- Varying vegetation types
- Seasonal patterns

RTK and Drone Surveys + inSAR retmote sensing

Permanent aluminum base plates, repeat surveys, long term subsidence

(+ French Island, because eddy covariance tower is there)

Predominate Veg/ land use in	% High tides	No.	%		
elevation range	inundating	Inundations in	Saltmarsh	% Of	Elevation
	elevation	elevation	flooded by	saltmarsh	and tide
	range	range p/a	tidal range	area	height
Mud/ open water/ mangroves	100	711	12.46	12.46	<4
Sarcocornia	96.62	687	28.04	16.12	4.0-4.2
Sarcocornia	72.71	517	47.38	19.34	4.2-4.4
Sarcocornia	37.97	270	73.01	25.62	4.4-4.6
Sarcocornia/ Gahnia	10.69	76	85.09	12.09	4.6-4.8
Gahnia /Sea couch	2.81	20	91.53	6.45	4.8-5
Boardwalk/ terrestrial veg.	Storm surges	Storm surges	95.25	3.71	5-5.2
Infrastructure/ terrestrial veg.	Storm surges	Storm surges	97.66	2.42	5.2-5.4
Infrastructure/ terrestrial veg.	Storm surges	Storm surges	99.11	1.45	5.4-5.6
Infrastructure/ terrestrial veg.	No inundation	No inundation	N.A.	0.56	5.6-5.8
Infrastructure/ terrestrial veg.	No inundation	No inundation	N.A.	0.32	>5.8

