Gippsland Coastal Projects FACTSHEET #3 Coastal Models

This fact sheet provides a summary of how we can use coastal models and measurements to understand natural coastal processes and the suitability of different adaptation options.

We recommend reading Factsheet #2 Coastal processes and hazards before reading this factsheet

Improving our understanding of coastal processes and hazards

Having a better understanding of coastal processes and expected changes in climate allows us to be better informed to make decisions and plan for the future.

Using the best available science and evidence-based understanding provides more certainty in the decisions we are making.

We can increase our understanding of these natural processes though monitoring and modelling.

Picture 1: Inverloch at sunrise (DEECA)

Monitoring

Monitoring of wind, water levels, waves and climate patterns, along with shoreline changes, helps us understand relationships between these factors and the changes we see on our coast (i.e. drivers of change, trends, fluctuations, seasonality).

This can include using data collected from buoys, gauges, weather stations, site visits, and field, aerial or drone surveys.

Modelling

A model, which can be a physical or computer model, is a simplified replica of real-world processes and a tool we can use to test what changes we might see in the future under different scenarios. Models rely on good quality monitoring data.

What is a coastal model?

Models come in many shapes, sizes and types. A coastal model is a simplified and/or scaled-down representation of the real world that we can use to better understand complex natural systems.

We can also test adaptation options in a model, before implementing these in real life. Coastal models can be physical, numerical or a combination.

A **physical coastal model** is often a scaled-down replica of the coastal environment. They can be quite

simple, like a wave tank or flume, or very complex, representing an entire bay or estuary.

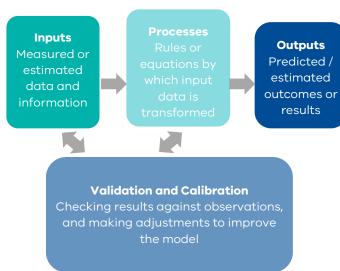
Eneray.

and Climate Action

Complex physical models are generally built in laboratories. They can be

expensive to build and run, so may only model a small area of the coastal zone, such as a beach or structure rather than the entire system. Physical models can also be set up in the 'real world' (e.g. on the beach or dune).

Picture 2: A wave tank is a simple physical model (DEECA)


As technology has advanced, we are now able to 'build' digital models of our coastal environment and simulate a range of conditions (scenarios) for larger areas.

Therefore, for landscape investigations, technical teams now use computer models.

A computer (or numerical) coastal model can be used to simulate coastal processes such as waves, water levels, currents, and sand movement. These models use mathematical calculations to represent complex physical processes.

They have:

- inputs (based on measured or estimated data)
- processes (rules and equations applied to the inputs); and
- outputs (estimated results) which are produced when the model is 'run'.

Using computer models

Why do we use them?

Computer models can be used to understand how the coastline may change or areas that may be inundated or erode. A model can be set up to represent different

conditions, such as storm events, rising sea levels, or possible management options (e.g. changes to the landscape, or adding/removing engineering structures).

We use models to replicate weather conditions and changes we have already experienced, but also to understand events that we have never seen before, including larger storms and higher sea levels.

We can also trial various management (adaptation) options in the model, to see if they are effective solutions. Options to manage complex coastal processes in the short and long term can require major investment, and can have significant adverse impacts on coastal values (if the wrong option is implemented). Modelling of the options is a best practice approach to ensuring the right decisions are made for the short and longer term.

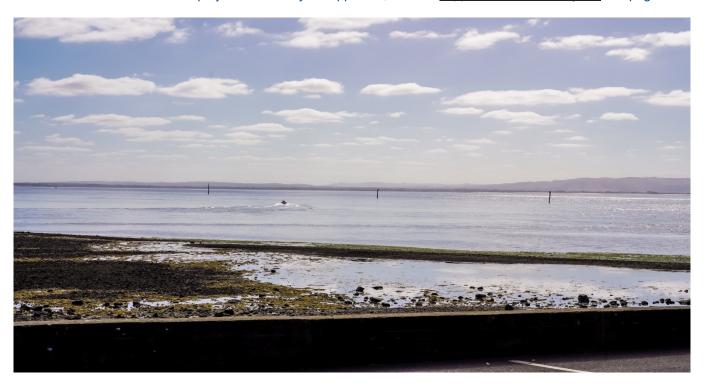
How accurate are computer models?

Coastal model outputs can be compared with past measurements and other models to 'validate' the model. We make adjustments to 'calibrate' the model to make results more accurate. It takes time and a good understanding of coastal processes to develop and check models, their setup, and the input data, to ensure we get quality modelling results.

The coastal models we use have been developed based on extensive scientific knowledge and research. However, they can only provide a simplified representation of the real world. While there are some uncertainties in model results, computer models help to improve our understanding and fill knowledge gaps.

Model outputs

Model results help us to understand areas of coastline that may be exposed to coastal inundation and erosion, and how the coastline might respond if these conditions occur.


Working with the community, we will use this important information that will help make decisions on coastal management options for the region.

Our models can also be used to test the performance and suitability of different management (adaptation) options.

Picture 3: Cowes (DEECA)

To find out more about coastal projects underway in Gippsland, visit the Gippsland Coastal Projects webpage.

Picture 4: Newhaven (DEECA)

We acknowledge Victorian Traditional Owners and their Elders past and present as the original custodians of Victoria's land and waters and commit to genuinely partnering with them and Victoria's Aboriginal community to progress their aspirations.

© The State of Victoria Department of Energy, Environment and Climate Action February 2024.

Creative Commons

This work is licensed under a Creative Commons Attribution 4.0 International licence, visit the <u>Creative Commons website</u> (http://creativecommons.org/licenses/by/4.0/).

You are free to re-use the work under that licence, on the condition that you credit the State of Victoria as author. The licence does not apply to any images, photographs or branding, including the Victorian Coat of Arms, and the Victorian Government and Department logos.

ISBN 978-1-76136-566-9

Disclaimer

This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.

Accessibility

To receive this document in an alternative format, phone the Customer Service Centre on 136 186, email customer.service@delwp.vic.gov.au, or contact National Relay Service on 133 677. Available at DEECA website (www.deeca.vic.gov.au).